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The following work has been carried out within sFly, a Eu-
ropean project that aims to implement swarms of autonomous
Micro Aerial Vehicles (MAVs) collaboratively monitoring a
disaster area. We present a framework for solving a core
problem in this scenario, namely the collaborative localization
and mapping with multiple MAVs in unknown environments.
While solving the SLAM problem with multiple robots in
parallel promises more efficient and extensive exploration
of the environment, it also increases the computational and
inter-robot communication load. Similar to [8] and [7], a
straightforward solution to the illustrated problem consists
of adding a centralized node to the system, which receives
combined sensorial information from all swarm members
in order to perform multi-robot SLAM. Concentrating all
information at a central position allows optimal coordination
of the MAVs. However, it also increases the communication
load and, thus, reduces the MAVs’ work space. As presented
in [[L1], the alternative consists of performing SLAM on each
MAV individually and then share and merge the maps once the
helicopters are within the communication range. This reduces
the communication load, however, it leads to a substantial
increase of the computational demand on the robots. In this
paper, we present an intermediate solution to the multi-robot
SLAM problem: multiple MAVs continuously stream sparse
and preprocessed data to a central ground station where the
Collaborative Structure from Motion (CS£M) system creates a
3D map of the environment in real-time and tracks the robots’
position in it.

As presented by Blosch et al. [1] and Weiss et al. [12],
we use a single downlooking camera onboard our helicopters
to perform incremental egomotion estimation. The overall
structure of our multi-robot SLAM extension is presented
in Figure [I} Each MAV tracks its position using an on-
board monocular Visual Odometry (VO) algorithm. The VO
algorithms operate as distributed preprocessors which stream
only key-frames and corresponding incremental relative-pose
estimates to the CSfM system on the ground station. The
CSEM algorithm merges all the information into potentially
common maps. By transmitting only features extracted from
key-frames, the required bandwidth is kept at a considerably
low level (~1 Mbit/s for 200 BRISK [6] features and 10 Hz
key-frame rate) compared to streaming entire raw images
(~86.6 Mbit/s for monochrome WVGA and 30 Hz framerate).
This algorithmic layout leads to a system where mapping and
MAV-motion estimation are clearly separated.
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We use the minimal structure-from-motion-like VO pre-
sented in our previous work [3]]. It is boosted in terms of
robustness and efficiency by including incremental relative
rotation priors obtained from the onboard IMU. This results
in less complicated geometric algorithms that compute trans-
lation only (based on [4]). Furthermore, it also increases
robustness against less favorable feature distributions in the
image plane and dynamically moving scene objects.

On the ground station, the CS£M system gathers all VO’s
key-frames and initially creates an individual map for each
MAV. Locally, the map is constantly refined by using bundle
adjustment [5)]. The system’s external PlaceRecognizer
module is based on the bag-of-words approach [9l 2], and
detects, based upon the transmitted features, when a MAV
observes a place that has already been visited by itself or
by another MAV. The result is verified by efficient geometric
comparison of the 3d-map structure at both places. Map
overlaps trigger loop closures and map merges, respectively.
Loop closures are optimized by a 7-DoF pose-graph relaxation
according to [10]. On the other hand, if the maps of two MAVs
are merged, their relative position is implicitly obtained. The
corresponding MAVs then provide information to extend the
same map. The key to real-time performance at this stage is
the design of data-structures and processes that allow multiple
threads to concurrently read and modify the same map. More
specifically, the CSfM system assigns a separate thread for
each MAV in order to asynchronously process their respective
key-frames. Furthermore, the proposed internal environment
representation allows additional maintenance threads to si-
multaneously process and improve the map in regions that
are not currently relevant for the MAVs that operate on the
map. To obtain a consistent map, a crucial point showed to be
the estimation and correction of the scale-divergence between
the drifting VO and the map on the ground station which is
maintained by the mapping pipeline of the CS£M system.

The system is implemented in C++ and successfully tested
on multiple datasets showing real-time performance in pro-
cessing the data of two MAVs on a laptop with an Intel
i7 dual core processor (2.8 GHz). The datasets are recorded
with multiple sFly hexacopters navigating indoors with ground
truth provided by a Vicon motion capture system. The CS£M
system is able to reconstruct relative key-frame positions with
an accuracy of 6 cm over summed MAV trajectories of 30 m
(see Figure [2). Please refer to www.cforster.ch/csfm for videos
of the experiments.


http://www.cforster.ch/csfm
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Fig. 1: The CS£M system creates a separate thread for each
Visual Odometry (VO) input. Initially, each thread creates
its own map. However, the maps are merged when the
PlaceRecognizer detects overlap between the two maps.
Both threads then read and update the same map simultane-
ously.
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Fig. 2: Examples of the map created by two MAVs and the
CS£M system. The top image shows the state shortly after an
overlap was detected by the PlaceRecognizer (red line).
The maps are then merged (middle image). The bottom image
illustrates the final result from the side.
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